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L Background

Mean Field Model |

@ Fouque and Sun (2013): Systemic risk illustrated. Hand-
book on Systemic Risk, J.P. Fouque and J.A. Langsam
Eds, Cambridge University Press.

N

axi = %Z(X{ — XDdt +0dW!,  i=1,...,N.
j=1

@ Bo and Capponi (2015): Systemic risk in interbanking
systems. SIAM J. Finan. Math. 6, 386-424.

@ Biagini et al. (2019): Financial asset bubbles in bank-
ing networks. SIAM J. Finan. Math. 10(2), 430-465.

@ Capponi et al. (2020): A dynamic system model of
interbank lending-systemic risk and liquidity provision-
ing. Math. Oper. Res. 45(3), 1127-1152.
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L Background

Controlled Mean Field Model |

@ Carmona et al. (2015): Mean field games and sys-
temic risk. Commun. Math. Sci. 13(4), 911-933.

N
dX! = %Z(X{—Xf)dt+9fdt+adW,i~|—0’0sz0 ,i=1,...,N.
j=1

@ Aim to minimize

T
F(0 e 0N —E [/ £ (X, 0))de + g (X3) |
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LModel Setup and Problem Formulation

Financial Model |

@ The log-monetary reserve of bank i satisfies

N
dx?t = %Z(Xf‘j—X?’i)dt+ui9tdt+aidW,i+aodW,(), t€(0,T].
j=1

@ Type vector: ¢ := (a;,u;,00)" € O := R3.

@ Control rate implemented by the central bank: 6,.

© Target log-monetary reserve level determined by the
central bank: Y'.




Centralized systemic risk control

LModel Setup and Problem Formulation

Financial Model Il

@ Objective functional
T
In(0) =E [LN(XOT’N,YN)Jr / RN(X?’N,YN;Gt)dt],
0

where X%V .= (x%! . xIMT yN .= (v!,...,YM)T.
@ Loss function

N

LN(va) = 7ZL(xiayi)a RN X ya
i=1

Z|e
2\@

N
Z xzvyz +)\‘92

where L(X[,yi) = |xi - yi|2-
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Financial Model IlI

@ Control problem under strong formulation:

UPF .= {6 € H?; 6,(w) € © as. on [0,T] x Q},

where H? is the space of all F-adapted and real-valued
processes 0 = (6,),co.r) satisfying E[ [ 6,2dr] < oc.

@ Assumption (A,;): There exists a global constant K
such that |¢| < K for all i > 1. The sequence of initial
log-monetary reserves {X;} e satisfies sup, E[|Xp|**¢] <
oo for some ¢ > 0.

@ Assumption (Ag): The policy space of © C R is a
(nonempty) compact and convex set.
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LModel Setup and Problem Formulation

Optimal Control with Finite Banks |

@ Rewrite the system in a compact form:

dX? =b(X?,0,)dt + $dW?, t € [0,T],

@ The drift term is defined by:

(lfN)al ay al X1971

0 1 a (1 — N)az s ap X;g’z
b(X/, 0r) ::N . . . .

an an -+ (1 =N)ay XthN

::AX,Q + 6,
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LModel Setup and Problem Formulation

Optimal Control with Finite Banks Il

@ The volatility matrix is given by

oy o1 o .- 0
(o)) 0 (o)) e 0
=
o 0 0 - on dyven

@ Define the parameterized Hamiltonian:

1
M poMsy) = ot {b0x)p o+ J0(SSTM) + R(x,yi0) |
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LModel Setup and Problem Formulation

Optimal Control with Finite Banks Il

@ Consider the following parameterized HJB equation:

ot

C OV xiy) — A%, ViV xy), V2V (%)) = O,
V(Ta X Y) = LN(Xa Y)’

@ The HJB equation admits a unique classical solution
(Theorem 1V.6.2 of Fleming and Rishel (1975)).
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LModel Setup and Problem Formulation

Optimal Control with Finite Banks IV

@ Optimal control:

N
SN s e, 1 V(1,X5Y)
0[ :f (tv X[ 7Y H@ <_)\Z: 8Xj )

where

t
X;“:X0+/ b(X!, (s, X5 Y))ds + XW,, t€[0,T].
0
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LModel Setup and Problem Formulation

Our Goals

@ The convergence of optimal controls " as N — oo;

@ The limit of #*Y as N — oo is the minimizer of a so-
called limiting control problem.

Challenges:

@ 0" heavily depends on the dimension N which is com-
ing from x,y and V.

@ Build the rigorous connection between the problem
with N banks and the mean field control problem.
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LModel Setup and Problem Formulation

Control Problem under Weak Formulation |

@ Canonical space representation:
Qoo = EN X Cr x CF X L%, Foo = B(Qo),

where = := R

@ coordinate process X := (, (W, A) 9), i.e., X(w) =
w for all w € Q. Here, =3, )T and W :=
(W, W2, ).

@ Complete natural filtration F = (F¥)iep, generated
by the coordinate process X'.
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LModel Setup and Problem Formulation

Control Problem under Weak Formulation I

@ The space (2, is equipped with the metric: for (v, w, s, p)
and (9, w, <, p) € Qe,

d((’Yv Sy Wy 5)7 (’% Sy, ’%)) =d (7, '3/) + dz(§, 6) + dS(W7 1’A‘)) + d4(”/"7 ’%)>

@ The metrics d; fori = 1,2, 3,4 are given as follows:

o0 ~
i = Al
di(7,9) = T =R, =GR € =N
Zl 1+ |y — 4il V= V=
dy(5,Q) ==l =<llr = sup |a—3&|, ¢,$€Cr;
1€[0,7]

o0 ~
R —i_lwi = Willr
dz(w,w) = E 27— , W= eck;
3(w, W) < 1+ [wi — willr w=(wi)iZ), = (0)Z T

1
T 2
da(, R) = |5 = &l 2 = (/ |k — f%,|2dz) , KR E LA
0
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LModr—)l Setup and Problem Formulation

Control Problem under Weak Formulation Il

Definition 1 (Weak Controls)

Given the law v € P(ZV), let Q(v) be the set of probability measures
0 on (Q, Fso) satisfying

(i) Qo' =v;
(ii) (WO,W) is a sequence of independent Wiener processes on
(o0, Foos F, Q);

(iii) 0 € U2F.

@ Control problem under weak formulation (for fixed N):

Vi) = i JA(©)

~ T ~
JR(Q) :=EC {LN(X"}*N,YN) +/0 RN(Xf‘N,YN;a)dt} .
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LModel Setup and Problem Formulation

Main Steps:

@ Identification of explicit limiting optimization problem
with infinitely many banks (i.e., N — o).

@ Equivalence of the value functions under strong and
weak formulations.

© The minimizer of finite-dimensional optimization prob-
lem tends to the minimizer of explicit limiting optimiza-
tion problem (i.e., Gamma- convergence).

© The minimizer of the limiting optimization problem is
an approximate optimal weak control to the strong con-
trol problem.
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LLimit of Optimization Problem

Convergence of Empirical process |

@ Let Oy € 9(v) and XN be the corresponding coordi-

nate process to %rvﬁ XN = (x X )i SOlves

the following sys
—~ . a; N o~ . —~ . —~ . —~
dxN = N &Y - X"t + wbNdt + o dW" + ood W
j=1
@ The empirical measure-valued process " = (1} )ejo 1
under Oy € Q(v) is defined by

N
1
i'= 5 D g g € Pa(E). 1€ 0.7
i=1
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LLimit of Optimization Problem

Convergence of Empirical process |l

@ Assumption (A,;): For any v = (x,y");>1 € EV, define
Iv:y = % 30 Oy € P2E) for N > 1, there exists a
measurable mapping 7. : =¥ — P,(E) such that

v ({’y e2: lim Wea(lv(y), L. (7)) = 0}) — 1.

@ Let Q" be the law of empirical distribution:

QN = QN o (Mf)va éw:MN)il'
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LLimit of Optimization Problem

Convergence of Empirical process |l

Let (A,;) holds. We assume in addition that

QNO(MOv ) 1:>V07

as N — oo, for some vy € P(P,(E) x £*). Then, it holds that
@ (QY)%, is relatively compact in Ps(S).
where S := P> (E) x L} x S and S := C([0, T); P»(E))
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LLimit of Optimization Problem

Convergence of Empirical process IV

@ Sketch of Proof
@ Introduce the metric on § as: for (1,6, p), (0,6, p) € S,

dS‘((Va 97p)7 (ﬁa éa ﬁ)) = WE,Q(V, ZA/) + ||0 - éHﬁ% + ds(p7 ﬁ))

where ds(p, p) := sup,e(o. 1) We2(pr: 1), for p, p € S.
@ By Villani (2003), (QV)32, is relatively compact in P,(S) if
and only if
(i) (QY)52, is tight (relatively compact) in P(S);

(i) lim supysy fy,es 2y 95 (0 QY (dp) = 0.
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LLimit of Optimization Problem

Convergence of Empirical process V

@ Characterize the limiting process: if the law of an §-
valued r.v. (i, 0, i) defined on some probability space
(9, F, P) is the limiting point, then i = (fi,)c0.r) Satis-
fies the stochastic FPK equation that

t

(i, ) = {fio, )+ /0 {7ty AP ) dsh /0 i, )W, V€ CAR),

where

2 2
AM9(x) 1= g () + T (), m e PA(E), O €O,

and g™ (x) = a ([, zm(d&, dy, dz) — x) + uf.
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LLimit of Optimization Problem

Convergence of Empirical process VI

Proposition 3

If iy has a square-integrable density w.r.t. Lebesgue mea-
sure, then the stochastic FPK equation admits a unique
solution. Thus, {QV}x>, converges in Ps(S).

@ Sketch of Proof
@ Well-posedness of the following linear SDE: for any
fixedv e s,V ¢ € C3(R),

<19z,¢>=<ﬂoy¢>+/0<19s,«4”"’§"¢>ds+00/0<195,¢’>dﬁ’?- (4.1)
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LLimit of Optimization Problem

Convergence of Empirical process VIl

@ Change the P(E)-valued process to an L2-valued process:
g p p

T59,(x) := / Gs(x — 2)%(da,du,do, dy, dz),
RS

where Gs(x) = ﬁe—% is the heat kernel.

@ I /iy has an L2-density with respect to Lebesgue measure.,
then so does 9, for any r € [0, T].
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LLimit of Optimization Problem

Convergence of Empirical process VIlI

© If ¥' and ¥? are two P(E)-valued solutions of (4.1), then
¥, := 9} — 9?7 satisfies

o~ I~
B |70, < C / B [I75(10,]) 3] ds.

where the constant C > 0 is independent of 9! and 2.

@ Denote ||9],» the L*>-norm of the density function of the
signed measure .
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LLimit of Optimization Problem

Convergence of Empirical process IX

© For a complete orthonormal basis (¢;);>1, it holds that

J

E[I9i]}:] =E [ij,w] =E {Z lim (75, W}
J

1
= . \2 . = 2
~F [}j: glo<m,w,>Lz] < tim ¢ [E[I75(0,) 1]

< c/o’ﬁ (11191 12,] s = C/O’fg [19513.] as.

@ By Gronwall's inequality, the linear SDE (4.1) has a unique
solution.
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LLimit of Optimization Problem

Convergence of Empirical process X

@ Well-posedness of the following conditional Mckean-
Vlasov equation:

dX; =a <X, — /xl/,(df, dy, dx)) dt + ﬁé,dt + 5dV~V, 4 O'Odﬁ/lo,
E
V= E((El, ﬁ7 67 ?7Xt)‘gvt)7

‘where { = (a,i,5,7,Xo) is an E-valued r.v. with Po
(l=jipand G, :=a({) Vo (W0 b s <t).

@ For any r > 0, define Banach space

T
H, := {X: F-adapted process, ||X||, :=E {/ e_”|X,|dt} < oo} .
0
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Convergence of Empirical process Xl

@ Forany X0 € H, and v = £((a,i1,5,Y,X|G,), i =
1,2, define

Z,(xD) —Xo+a/ (/xug )(df dy,dx) — X()) deru/ Osds—+6 W+ W0,
0o \JE

@ Foranyr >0,

HZ(X<1>) — Z(x®)

< = Hx(l) _x®

r r

@ Then the result follows from the contraction mapping
theorem.




Centralized systemic risk control

LLimit of Optimization Problem

Convergence of Empirical process XlI

@ Well-posedness of the stochastic FPK equation.

@ Let v, 1@ be two solutions. Consider the following
SDE:

ax\V =a (x,“) - / xvtV(de, dy,dx)) dt-+iaf,dt+G5dW,+0,dWP.
E

@ Then vV = £((a,i,5,7,x")|G,) is a solution to the
linear equation (by It8’s formula) [(!) solves FPK]

~ l ~
<79t(1)7¢)> = <ﬁ0,¢>+/ <19§1)7v4y‘(1)795¢>ds+0—0/ <19§1),¢/>dW?
0

t
0

© Thus v = 9 and then (X(V, (1) is a solution to
the conditional Mckean-Vlasov equation.
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Convergence of Empirical process XllI

@ Similarly, (X®,(?) also is a solution to the conditional
Mckean-Vlasov equation.

© By the uniqueness of solution to the conditional Mckean-
Vlasov equation, we have v(!) = (.
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Convergence of Objective Functionals

Let (A;) and (A,;) hold. Then, limy_,~ JX(Q) = JR(Q). Here,
Q) i=a [t 1)8uld) + 5 [ ( / <p,,L>@#<dp>) d

T
+ AE2 [/ |9,|2dt} :
0

where Q, is the weak limit of

Q) == Qwo (B")7".
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LLimit of Optimization Problem

@ Sketch of Proof

@ By Thm 7.12 in Villani (2003),
(0= [(on0)8d) > [0 D)Bulap) Vre.Tl N oo

@ By the uniform integrability of {hy(¢)}n>1, we have

Jdim [ = [ o000 ae
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Gamma-Convergence |

@ Metrize Q(v) by taking 2nd-order Wasserstein distance W,.
@ I'-convergence of (J§(Q))32, on metric space (Q(v), W»)
is defined as (see, e.g. Braides (2014)):
Definition 5 (Gamma-Convergence)

We call J® : Q(v) — R I'-converges to JX : Q(v) — R, i.e.,
small/® = T-limy_, . J® on Q(v), if the following conditions hold:
(i) (liminf inequality): For any QO € Q(v) and every se-
quence (Qn)5>; converging to Q in (Q(v), W), we have that
(i) (limsup inequality): For any QO € Q(v), there exists a se-
quence (Qy)3, which converges to Q in (Q(v),W,) (this se-
quence is said to be a T'- realising sequence), we have that

limsupy_, . JR(Oy) < JR(Q).
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Gamma-Convergence |l

@ The following proposition implies both the liminf and
lim sup inequalities.

Proposition 6

Let assumptions (A;), (Ayp) and (Ag) hold. For any
{On}N>1,0 C Q(v) satisfying limy 00 Wa.. 2(On,0) = 0, let
(N, (WNO W) 6V (resp. (¢, (W°, W), 6)) be the corresponad-
ing coordinate process to Qy (resp. Q). If I.(¢) has a
square-integrable density (under Q) w.r.t. Lebesgue mea-
sure, then we have

Jim_ J(Qw) = J%(Q)-
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L(:‘.amma-Convergence

Precompactness of the Minimizer |

Construct a precompact sequence of minimizers:

@ The equivalence of the value functions under strong
and weak formulations. That is,

inf Jy(0) = inf JR(Q).
,dnf w(0) ik v(Q)

@ Continuity of the objective functional. Jy(0) : UPF — R
is continuous with respect to the metric induced by the
H2-norm.

@ By Ekeland’s variational principle: there exists a mini-
mizing sequence {6};>, c UPF, s.1.

1
In(05) < Iy(0) + %He’f —Ollge, VO eUPE
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Precompactness of the Minimizer Il

@ Characterize the minimizing sequence. There exists
¢ € H? with ||x*|lge < 1, such that

o — o [~ LS gt~ L
<) 2)\ - uip; ZAkXt .

Here (p*, ¢*) is the unique solution to the adjoint equa-

tion
k_ Tk, 28 1wk
dp; =— |A p; + W(X’ Y) dt+qldW,, t€[0,7T),
2«
p];" = ViL (XI;"?Y) (Xk Y),

where X* = (Xf),c(,7 satisfies dXf = b(X}, 0f)dt + SdW?.
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Precompactness of the Minimizer Ill

@ Construct admissible relaxed control sequence: QF :=
Po (¢, (W2, W), 0)~! and show the tightness of (Q%);>;.
Thus, O* converge to some Q"V* weakly (along a sub-
sequence).

@ Using Skorokhod’s representation theorem, we have:

R Nok\ 12 _ R
JN(Q") = Tim Jy(0") = it _Jy(0) = ol IR ®(Q).

@ The sequence of minimizers (QV*)y>; is tight.
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LGamma-Convergence

Main Results

@ The main implication of (i) I'-convergence and (ii) the
precompactness of the sequence of minimizers:

Theorem 7
Let (A,;) and (Ay;) hold. Then, as N — oo,

inf JR — min JR ,
0eQ(v) Q) 0€Q(v) ()

where the minimum of J®(Q) exists. Moreover, if the min-
imizer (QV*)%_, C Q(v) (up to a subsequence) converges

to some Q* € Q(v) (the existence of 0* has been guaran-
teed), then 0* minimizes J®(Q).
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Approximate Optimal Weak Control

Corollary 8
Let 0* € Q(v) be the minimizer of JX(Q). Then

lim
N— oo

(@)~ inf I(0)] =0

@ In fact, we have that, as N — oo,

@) - int v(0)| =

@) - ot S)

< [N Q") = 7% (@)

inf J®(Q)— inf JR ‘—>0.
ook (0) ik N(Q)
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